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Inhomogeneous cosmological models in scalar-tensor theories
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Abstract. — Exact self-similar spatially inhomogeneous G2 cosmological models are found in
a class of scalar-tensor theories of gravity by exploiting the formal equivalence of this class of
theories (under a conformal transformation and field redefinition) to general relativity minimally
coupled to a scalar field with an exponential potential. We argue that these exact self-similar
solutions may play an important role in describing the asymptotic behaviour (both at early and
at late times) of more general scalar-tensor G2 models. The possible isotropization and the
homogenization of these models is briefy discussed.

In a companion paper [1], we studied the class of scalar-tensor theories of gravity with the
action [2, 3]

— — w —
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which is equivalent, under the conformal transformation and field redefinition [4-7]
Gab = ¢gab7 (2@)
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to general relativity coupled to a scalar field with the action

5= [vEa|r-genen 2" ate. 3)

In particular, we studied those theories that transform into (3) such that the potential of the
scalar field is of the exponential type, viz

V(p) = Voeh? =
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where Vj and k are (non-negative) constants, and we exploited previous results on the asymp-
totic behaviour of spatially homogeneous scalar-field cosmological models with an exponential
potential [8-10] to study the asymptotic properties of the corresponding models in scalar-
tensor theories. In this brief report, we shall extend this study to a class of inhomogeneous
scalar-tensor models using similar techniques. In the last years there has been an interest
in studying inhomogeneous cosmological solutions of low-energy string theory [11]. Since the
low-energy action for bosonic string theory is identical to the JBD action with w = —1, it
seems worth extending the analysis done in [1] to inhomogeneous scalar-tensor models. As a
first approach to this problem we will try to benefit from previous results obtained by studying
the asymptotic behaviour of a certain class of inhomogeneous metrics [12].

Indeed, we shall consider the subclass of scalar-tensor theories of gravity in which the
arbitrary functions are given by

w(¢) = wo, (5a)
V = Bo”, (5b)

where wg, a and 3 are constants (i.e., the potential V is of power law form), so that eq. (2b)
integrates to yield

6= o0 exp [£222) (6)
@

where

© =t/ wo +3/2, (7)
and hence

V = Voek? (8)

where

a—2

h=—". 9)

Clearly, the corresponding action (3) represents general relativity coupled to a scalar field with
an exponential potential.

We shall study the scalar-tensor theories (1) and (5) in the inhomogenous G2 geometry in
which there exist two commuting space-like Killing vectors (0/0x and 9/0y) and the metric
is given by

ds? = e (=dt* + d2®) + G (ePdz? + e Pdy?) , (10)

where all metric functions depend upon ¢ and z [13]. To preserve the Gy geometry the scalar
field is assumed to be of the form

(b:(b(tvz)v (11)

so that providing the transformation (2a) is non-singular, the corresponding general relativistic
metric g is also a Gy metric. Gg scalar-field cosmological models with an exponential potential
have been studied by Ibdnez and Olasagasti [12,14].

In previous work on Go perfect fluid models [15], in which the Einstein field equations
in expansion-normalized variables take on the form of a quasi-linear hyperbolic system of
autonomous partial differential equations (PDEs), it was shown that the equilibrium points of
the corresponding infinite-dimensional dynamical system are represented by exact self-similar
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Go cosmological models. Thus, it is reasonable to assume that there will be a general class
of scalar-field general relativistic Go cosmological models with an exponential potential that
will be asymptotic in the past or to the future to an exact self-similar G2 cosmology, since
the corresponding Einstein field equations again have the structure of an infinite-dimensional
dynamical system in which the equilibrium points correspond to self-similar models.

In [12] scalar-field Gy cosmologies with an exponential potential were studied. In this work
the metric components of (10) were assumed to be separable in the variables ¢t and z; i.e.,

G(t,2) = T(t)Z(2), (12a)
F(t.2) _ of(1)fi(2) , (120)
) = Q(1)Z(:)", (12¢)

where n is a constant (note that eq. (12¢) has an additional assumption that the function of
z is related to the function of z in (12a)). This form of the metric has been used by several
authors [16] in a different context and it allows the z-dependence of the field equations to be
completely determined, leaving a set of ordinary differential equations (ODEs) for the unknown
functions of ¢, which can be analyzed using dynamical-systems techniques. In the case studied
in [14], where the function G' was homogeneous, it was found that with a linear inhomogeneity
(as is the case of the homogeneous Bianchi model subclass) isotropization depends solely on the
parameter k of (8); when k? < 2 all solutions isotropize and homogenize, but for k2 > 2 only
a subclass of solutions of measure zero isotropize, although all models homogenize. For the
solutions arising from (12) the analysis performed in [12] showed that most models asymptote
towards an inhomogeneous class of solutions, except a subclass of massless scalar field (Vo = 0)
models of measure zero, for which the late-time attractor is a homogeneous Bianchi type-I
model with a scalar field. The early-time attractors are inhomogeneous models which are
Kasner-like in their temporal dependence.

In particular the following exact self-similar G2 models were found to act as past or future
attractors:

1) The first two equilibrium points discussed in [12] are early-time attractors (i.e., sources in
the dynamical system) corresponding to the cosmological model whose line element is given by

dsgr = Dt 2% (=dt? + d2?) + 11122 de? 4 1172y, (13)
where D is an arbitrary constant,

VEZ ¥ 2 =22
my = i% (14a)

n )
1 2 9 92
21@(1@\/1@ T2-2n ) , (14b)

Cy=n (1 +./8/ (k% + 2)) and C; = 1 +n"'Cs(1 + C4) (for these solutions, the upper sign

refers to one equilibrium point and the lower sign refers to the second equilibrium point). The
scalar field for these two solutions is given by

Ct

1
= (myCy — 51@) Int — %lnz. (15)

2) The next equilibrium point represents an important class of solutions, which are future
attractors for k% < 2 (they are saddle points for 2 < k? < 6 and do not exist for either k% = 2
or k2 > 6). In general, they represent inhomogeneous models, but reduce to flat FRW models
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in the limit n? = 1, C+ = 0. The line element describing these models is given by

2 (k* —2) YO 2%+ 2 2 14+n3,.2 1 2
dsgr = | —== — (—dt* +dz°) + 2 ""dz" + 27 "d , 16
GR |:2\/6——k2 :| |:2Vb ( ) Y ( )
and the corresponding scalar field can be written
2k Cy

3) The final equilibrium point is a sink for k? > 2 (and a saddle for k? < 2), and corresponds
to very different models depending on the parameter k; for example, in the homogeneous limit,
for k% < 2 the model is a Kantowski-Sachs model, for k2 = 2 it is a flat FRW model, and
for k2 > 2 is a Bianchi type-IIl model. Defining the parameters a? = €A?(k? — 2)/(k* + 2),
Cs = [24]71[k2A? F ea’kv/k? + 2 — 2n2] and with

Acosh(az) + Bsinh(az) (k? < 2), +1,
E.={ A2+ B (k*=2), e=¢ 0, (18)
Acos(az) + Bsin(az) (k%> 2), -1,

where A, A and B are arbitrary constants, we can write the metric in the form
A? — ea?
2Vo

The scalar field in this case can be written

A2 _pea?

PEIMAg? e A 'EMdy?. (19)

A2 4nea?
A

dsig = eCHECE (—dt? +d2?) + e

1
=7 (Cst+CelnEy). (20)

We shall also consider the following Bianchi type-I massless scalar-field model, corresponding
to an equilibrium point which is a saddle point for all values of k, with line element

ds%R = D«e(%Ci)MEZCi (—dt2 + dz2) + (e“th)1+”dx2 + (emEz)lfndy2 , (21)

where E, = Acosh(az) + Bsinh(az) and a, A and B are all arbitrary constants. The massless
scalar field is described by

C
= _Ti (at +InE,) . (22)
Scalar-tensor Go attractors. — Let us determine the scalar-tensor counterparts of these

exact solutions.

1) Through the transformations (2), we find that the early-time attracting scalar-tensor
models associated with the general relativistic solution given by egs. (13) and (15) are described
by the line element

t(k/2=m+C2)/® Ot [k
ds%T = ¢0 (dséR) ) (23)

and by the scalar field
o= ¢Ot(mic2—k/2)/@ 5~ Cx/ka (24)

We note here that the corresponding transformations are singular at z = 0 (¢ = 0 corresponds
to a physical singularity). A similar situation occurs in the following cases.
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2) Similarly, the late-time general relativistic attractors given by eqgs. (16) and (17) are
transformed into the scalar-tensor solutions described by the line interval

1—2k/[0(2—K)] ,Cx [k
dS%T = %0 (dSéR) ) (25)

and by the scalar field
b= ¢o 12k/[0(2-k*)] ,—Cx/ko (26)

3) The other future attractor described by egs. (19) and (20) transforms to the scalar-tensor
model described by the line interval

31 Cy ke
st B
ds%T =& ¢OZ (dséR) , (27)
and the scalar field
¢ = goe O/ (28)

We conjecture that these self-similar Go scalar-tensor models play an important role in
describing the asymptotic behaviour of more general scalar-tensor models. In particular, it
is plausible that the exact solutions given by (23)-(24) and by (25)-(26) and (27)-(28) are
attractors (past and future, respectively) for a more general class of scalar-tensor models. This
conjecture may be proven by setting up the governing equations in the scalar-tensor theory as a
dynamical system and determining the stability of the equilibrium points corresponding to the
solutions (23)-(24), (25)-(26) and (27)-(28), or from a straightforward perturbation analysis of
these solutions.

Also, the massless scalar-field model (21) and (22), corresponding to a “saddle” point, which
transforms into the scalar-tensor model described by

_ [aC °
dsir = ¢y ' exp k—;t} EC/% (dsgg) (29)
and
0l )
(b = ¢0 exp %t} E'Z—Cj:/kw , (30)

is included since this special V' = 0 solution corresponds to a Brans-Dicke theory solution [17].
In this case the theory is formally equivalent to general relativity plus a minimally coupled
massless scalar field, and we can deduce the possible asymptotic behaviour of the Brans-Dicke
theory Go cosmological models not from the general relativistic scalar-field models with an
exponential potential but from the general relativistic Go stiff perfect-fluid models [18].

Since the transformations (2) depend in general on both z and ¢, these transformations will
typically be singular for a particular value of z; for example, the transformation corresponding
to (24) is singular for z = 0. However, the transformation is well defined for z > 0 (for
example) and scalar-tensor Go solutions can be obtained formally by analytic continuation. In
addition, we note that this work can be generalized to scalar-tensor theories with non-constant
w [1].

ok
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